- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Mahmoudian, Nina (4)
-
Wang, Zhaohui (3)
-
Wei, Li (3)
-
Song, Min (2)
-
Wang, Chaofeng (2)
-
Hoffman, John (1)
-
Moridian, Barzin (1)
-
Page, Brian (1)
-
Rastgaar, Mo (1)
-
Ribeiro, Guilherme (1)
-
Sietsem, Matthew (1)
-
Soliman, Ahmed (1)
-
Sun, Wensheng (1)
-
Torres, Andres (1)
-
Zhang, Yi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Chaofeng; Wei, Li; Wang, Zhaohui; Song, Min; Mahmoudian, Nina (, Sensors)This work studies online learning-based trajectory planning for multiple autonomous underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice environment. A centralized system is considered, where several fixed access points on the ice layer are introduced as gateways for communications between the AUVs and a remote data fusion center. We model the water parameter field of interest as a Gaussian process with unknown hyper-parameters. The AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the end of each epoch, the access points relay the observed field samples from all the AUVs to the fusion center, which computes the posterior distribution of the field based on the Gaussian process regression and estimates the field hyper-parameters. The optimal trajectories of all the AUVs in the next epoch are determined to maximize a long-term reward that is defined based on the field uncertainty reduction and the AUV mobility cost, subject to the kinematics constraint, the communication constraint and the sensing area constraint. We formulate the adaptive trajectory planning problem as a Markov decision process (MDP). A reinforcement learning-based online learning algorithm is designed to determine the optimal AUV trajectories in a constrained continuous space. Simulation results show that the proposed learning-based trajectory planning algorithm has performance similar to a benchmark method that assumes perfect knowledge of the field hyper-parameters.more » « less
-
Wang, Chaofeng; Wei, Li; Wang, Zhaohui; Song, Min; Mahmoudian, Nina (, OCEANS 2018 MTS/IEEE Charleston)
-
Moridian, Barzin; Wei, Li; Hoffman, John; Sun, Wensheng; Page, Brian; Sietsem, Matthew; Zhang, Yi; Wang, Zhaohui; Mahmoudian, Nina (, 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV))
An official website of the United States government
